On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
نویسندگان
چکیده
For many animals, including humans, the optic flow generated on the eyes during locomotion is an important source of information about self-motion and the structure of the environment. The blowfly has been used frequently as a model system for experimental analysis of optic flow processing at the microcircuit level. Here, we describe a model of the computational mechanisms implemented by these circuits in the blowfly motion vision pathway. Although this model was originally proposed based on simple experimenter-designed stimuli, we show that it is also capable to quantitatively predict the responses to the complex dynamic stimuli a blowfly encounters in free flight. In particular, the model visual system exploits the active saccadic gaze and flight strategy of blowflies in a similar way, as does its neuronal counterpart. The model circuit extracts information about translation velocity in the intersaccadic intervals and thus, indirectly, about the three-dimensional layout of the environment. By stepwise dissection of the model circuit, we determine which of its components are essential for these remarkable features. When accounting for the responses to complex natural stimuli, the model is much more robust against parameter changes than when explaining the neuronal responses to simple experimenter-defined stimuli. In contrast to conclusions drawn from experiments with simple stimuli, optimization of the parameter set for different segments of natural optic flow stimuli do not indicate pronounced adaptational changes of these parameters during long-lasting stimulation.
منابع مشابه
Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system.
Neurons sensitive to visual motion change their response properties during prolonged motion stimulation. These changes have been interpreted as adaptive and were concluded, for instance, to adjust the sensitivity of the visual motion pathway to velocity changes or to increase the reliability of encoding of motion information. These conclusions are based on experiments with experimenter-designed...
متن کاملLocal statistics of retinal optic flow for self-motion through natural sceneries.
Image analysis in the visual system is well adapted to the statistics of natural scenes. Investigations of natural image statistics have so far mainly focused on static features. The present study is dedicated to the measurement and the analysis of the statistics of optic flow generated on the retina during locomotion through natural environments. Natural locomotion includes bouncing and swayin...
متن کاملComputation Optical Flow Using Pipeline Architecture
Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...
متن کامل3D Hand Motion Evaluation Using HMM
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...
متن کاملNeural processing of naturalistic optic flow.
Stimuli traditionally used for analyzing visual information processing are much simpler than what an animal sees in normal life. When characterized with traditional stimuli, neuronal responses were found to depend on various parameters such as contrast, texture, or velocity of motion, and thus were highly ambiguous. In behavioral situations, all of these parameters change simultaneously and dif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 27 شماره
صفحات -
تاریخ انتشار 2005